MINEFIELD 6D 1.2 MANUAL

Igor Galochkin, iseeall@narod.ru

Last update: June 29, 2006

GENERAL INFO

This is yet another clone of Microsoft's Minesweeper game. Minefield 6D expands the original concept by making the field 3-, 4-, 5-, or 6-dimensional. The game is absolutely free. You may also use the included source files for any purpose.

Version 1.0 had a short manual and most players had difficulties understanding the concept of the game. So, in the revised version I tried to give enough explanations and provided some screenshots. Hope this will help.

Version 1.2 allows you to set even 7, 8, 9, and 10 dimensions, however the tiles will be very small. They can’t be larger, because there are just so many of them even on the smallest possible field in 10D, but all of them should fit in one screen. I advise you to play on an LCD monitor and sit very close to it. Make sure your eyes don’t hurt after playing with such small tiles. If they do, you maybe should play only with 6 dimensions.

INSTALLATION

NO installation is needed. Just double click Minefield_6D.exe and play.

GAME RULES

If you don't know the rules, here they are in short (skip this paragraph if you already know them). You get a field where some bombs are randomly placed. At first all tiles are unexplored, and you don't know where the bombs are. By left-clicking on a tile you 'open' a tile. If that tile contains a bomb, you lose the game, if there is no bomb on that tile, a number appears on the tile. This number shows how many bombs are there in total in all neighbor tiles of the tile. For example, if you get a ‘4’, then there are 4 bombs around that tile you clicked on. If you click a tile with right-mouse button, you mark the tile as possible bomb. You win the game when you open all non-bomb tiles and leave all bombs unopened or marked.

Differences in rules:

1) in Minefield 6D all tiles which don't have any bombs in the neighborhood are opened automatically. This is done to free the player from the stupid random guesses in the beginning of the game. Now you can't lose because of bad luck.

2) to make playing on multidimensional field easier all possible bomb positions are highlighted. You may find that playing in 2D with this option enabled becomes too easy. This is because Minesweeper game in 2D is just an easy game. You may switch off highlighting for more challenge.

THE CONCEPT OF 6D

Ok, now take a deep breath. I promise to go into as little math as possible.

[image: image1.png]o o o I o I

a
b4

This is a standard view of Minesweeper game for Windows. It is 2-dimensional, because the tiles are arranged in a table, which has rows and columns. Each tile has a unique position, which is defined by two coordinates: x and y. When you move your cursor over a tile with some number, the game highlights all possible locations for the bombs about which this number tells us. On the picture three possible positions for a bomb are highlighted.

Now let’s go 3D.

[image: image2.png]kR
Bk
[|
_l_l_l_l_li =

SEHENEUE Y

FYEYEFIFIET

1

TWZEE

In 2D we had a simple field of tiles, which was a table. Now we take many such tables, and put them in different layers. Engineers draw blueprints of their buildings just like that. They draw each stock of the building one after another on the same sheet of paper.

It turns out, that in 3D each tile has more than 8 neighbors. That is because not only the neighbors in the same layer count, but also the tiles in the upper layer and in the lower layer. You can easily see that in Rubik’s cube: the central piece (which is inside and isn’t visible) has all other pieces of the toy as its neighbors. So, there are actually 26 neighbors in 3D: all cubes minus the central one, 3 * 3 * 3 - 1 = 26.

[image: image3.png]T
YFT5

And here is how you see neighbors on a 3D field:

[image: image4.png]1 Minefield 6D

: rrrrrrr.....rr.

==~ il
rrrrnnnnnnnn
[l [[=

I = = e o [o
| o [e [
0 e o s [[o s s e |
9 oo I [o o o [

nrn mE e

e o | o

nrrrrrrrn
o o o e [
o o o o o o

The blue arrow is your cursor. It points at some tile with number 2. Eight tiles just around this tile are the neighbors of this tile, of course. They are marked by solid pink line. Other members are in the surrounding layers. The tile at which we point has a projection in the lower layer - a tile with 1 marked with dashed red rectangular. This tile is a neighbor of our tile, and its neighbors in that layer are also neighbors of our tile. Also the tile, at which we point, has a projection in the upper layer - this is a tile with 2 marked with dashed red rectangular. This tile and its neighbors in that layer are all neighbors of our tile. In total there are 8 + 1 + 8 + 1 + 8 = 26 neighbors.

You can see that all possible locations for the bombs are highlighted correctly.

That was a 3D field, which was easy enough to imagine and visualize. It is not that simple with 4D. Here is how you show 4D on a 2D screen:

[image: image5.png]F)) a)
< < < <

2
g g 5 g
&]]]

This is a table of tables. What is done is that we take a usual 2D Minesweeper field and then create a table of such fields. In this case the field is 8x5x4x4 tiles. When you go from one table to the neighbor table to the right, you get into the next layer. When you go left, you get into the previous layer. When you go up, you jump in time to previous time period, and when you go down, you jump to the next time period.

Drawing a 4D object on a 2D screen is like if some historian decided to draw a plan of a Medieval castle in different time periods, and the castle had undergone a few renovations: one new corridor here, one tower razed there and so on. He would have to draw each stock in each time period. And that is exactly what the 4D field shows: 2D fields on various stocks and in different time periods.

Ok, now for the neighbors. There are actually 80 neighbors in 4D. You may have noticed, that the number of neighbors is calculated using the same formula for any number of dimensions. It is 3n - 1, where n is number of dimensions.

For 2 dims it is 3 * 3 - 1 = 8.

For 3 dims it is 3 * 3 * 3 - 1 = 26.

For 4D it is 3 * 3 * 3 * 3 - 1 = 81 - 1 = 80.

For 5D it is 35 - 1 = 243 - 1 = 242.

Finally, for 6D it is 36 - 1 = 729 - 1 = 728.

And here is how you see neighbor tiles in 4D:

[image: image6.png]T BT _.z_l. o m i 1

_l_l_l_h

e lo]s] Mo | =
_l_l4 = _l_l_l

_l_l_l _l_l_l _h_l_l

r_z 5]
bl BTSRRI
il Jo oo = |
S e

1o o it e o o
SEETE RS EEE
naxns Mlaos s

g
H
=

If you don’t remember how we found neighbors in 3D, you may wish to look again at the picture 2 pages back. In 4D the members are the same as in 3D plus the ones in the next and the previous time period.

Our tile (the tile we are currently pointing at) has 8 neighbors in 2D, also it has two projections to the lower and the upper layer with all their neighbors counted, too. Now we need to “copy” all of that once into the previous year and once into the next year. It is exactly what we did when jumped from 2D into 3D: we just took a 3x3 square and copied into upper and lower layers to get a 3x3x3 cube. Now we take a cube and copy it into 2 more time periods to get a 3x3x3x3 hypercube.

We find a projection of our tile in the previous year (tile with 2 marked with blue solid rectangle) and in the next year (tile with 3 marked with blue solid rectangle). All their neighbors count (marked with solid cyan rectangles). Then we find projections in the same way for the projections of our tile in the closest layers. These “projections of projections” are marked with dotted blue rectangles. Finally, all neighbors of those also count (marked with dotted cyan rectangles).

Well, that was not very easy, I admit. But wait, it gets worse, when you get into 6D! The same way as we “copied” our field into layers, then copied the layers into different time periods, we can further copy everything we get on the previous step into some new dimension. Unfortunately, I can’t find any well-known interpretation for 5th dimension, to say nothing about the 6th one. 5th dimension may be “transparency”, with material plane the lowest, and ethereal, astral, spiritual or some other planes going in a row. All those planes will contain their own version of the 3D medieval castle (which is different in various time periods).

And finally, when we decide to go 6D, we would have to copy the whole stuff in those planes and the planes themselves into, say, multiple versions of the universe (wow!). As a result, you will get a table of tables of tables. Here is what you see when you set 6 dimensions for the field:

[image: image7.png]Ethereal Plane Astral plane

Universe 1

Universe 2

Universe 3

OH MY GOD, HOW DO I PLAY THIS?

If you are still reading this what you are thinking may be “How on earth would a sane person play this stuff?”

Fortunately, you don’t need to see all those dimensions, if you play with enabled highlighting of candidates for the bombs. You just need to sort out the algorithms you used for playing standard Minesweeper game and consistently use them in a more complex setting.

I will explain those algorithms in detail and show examples on a 4D field.

1. Edge bombs

Just look at the picture. I will ask a stupid question: “So, where is the bomb?” It’s unbelievable, but it is right there - under the highlighted tile!

So, edge bomb is easiest to spot - there is a tile with ‘1’ and when you point at it you see exactly one highlighted tile. Sometimes you may see a tile with a number higher than 1, but there also will be that exact number of highlighted tiles around. Understandably, all of those are bombs and you can safely mark them with right-click.

[image: image8.png]I oo o | [
o | [e o [| oo _l_l_l_lf _l_l_l_lf
=t i e

_l_l_l_l_l ll._l TN
Jotio e o oo i el o e o _l_l_l_l_l
_l_l_l_l SRS S
=I5y SIS Inl= 1 1

BT YTl I

rrrrrrr YRS STy

IR _|_|_| i EICT
bk

X3z l_
ITI_I_

I SIEVEICN BV (2
_l_l_l_l_l SR

e

SIS
SRS

[SIETEN ST TSN
[SXEICY EIETEY

jo ||

oIl

LILTLY LT
SIEIEN

SIEIE)

JEYEYEY
EYEYEY
EYEYEY
ENEYERNF
l_l_l_

2. Away with the trash

I continued this demo game by marking the obvious edge-bomb with right-click and now it is time for some cleaning. The cursor is now over another tile with ‘1’, which is a neighbor to the marked bomb (the question mark which is usually red turns green when it is a neighbor to the tile under cursor).

[image: image9.png]I oo o o =
n_l_l alojele o) _l_l_l_lf _l_l_l_lf
BT IR

EYRTEIENSY| 11 TEN 1T TEN
_l INEEE SR _l_l_l_l_l
_l_l_l_l SRS S
0= SIS Inl= 1 1
|t o [[[[=
WWWWW ot o | It o =
SEIRIEIE] SEIEIEIET SIEVEIEE)
T SIS SIS
Ioulo o fl [o e i e e - e L
Jot oo et oo e o i e[| e e
(SXEIET RIS
SLICTLTL] CILTLTCY QTiT
SYSIEIENE] SISIEVEIET Qi EIETE)
SXEIEIEIE] SISIEIEIET IRl
[SIETEN S TSN
SYEICY EIETEY

If you haven’t guessed yet, here is the logic: this tile with ‘1’ says: “one of my neighbors has a bomb!” We already know where that neighbor is. We deduct that all other highlighted neighbors are wrongly accused. They don’t contain any bombs, because otherwise the tile under cursor had a number higher than 1. You should open those innocent tiles with left-click.

3. Check if a neighbor tile “adds” to highlight

Just after opening the junk tiles I get the following situation:

[image: image10.png]Jo e 1o o e
Rl e N N
e o

R TR CTCU I i

BTN
oo [
I
IR
T o T
= S St ey
EYETIETEY YIS =iy
S s e B
SemEE SeEee S
e e e e
1o o o o o
ETETER T S
oo o o oo
oo o o
Il
o
e ST N T
=
[ETETERNETEEY
EEEREEE

and when I move the cursor a bit to the left I get this picture:

[image: image11.png]I I o s oo} A
e o o M o s _l_l_l_lf _l_l_l_lf
= i e

_h_h_h =1 _l_l_l

_l_l_l_l_l ll._l TN
IRl o s oo i o e e | _l_l_l_l_l
_l_l_l_l SRS S
0= SIS Inl= 1 1
|t o [[[[=
WWWWW ot o | It | o =
SEIRIEIE] SEIEEIE] SIEVEEE
T SIS SIS
[SURT) ETEVGNRTE SYRVSICN SV (e
Jot ot o et oo e o i e | e e
(SXEIET RIS
SLICTLTL] CILTLTCY QTiT
SYSIEIENE] SISIEVEIET Qi EIETE)
SXEIEIEIE] SISIEIEIET IRl
[SIETEN S TSN
SYEICY EIETEY

Chances are you may not figure out what is so nice about these two pictures. If you do, you must be really smart to guess so quickly. Here is the explanation. On the first picture the cursor was over a tile with ‘3’, which indicated that neighbors of that tile contained 3 bombs. When we moved the cursor to a tile with ‘4’, we got practically the same pattern of highlighted tiles. The only difference was that tile with number ‘4’ highlighted one more tile in addition to all those tiles highlighted by tile with ‘3’. What does that mean?

Ok, 4 is greater than 3 by one. There is one tile that highlight of tile with ‘4’ added to highlight of tile with ‘3’. The tile added to highlight must be a bomb. It is, because if wasn’t, the ‘4’ tile couldn’t be ‘4’ or it should have added more bomb candidates to the selection offered by the ‘3’ tile.

By the way, what would we do if in the previous example the ‘4’ tile would actually have ‘3’ instead of ‘4’ written on it? You will be able to answer that question after learning the next technique.

4. Finding more trash

After marking the bomb with right-click I get the following highlights:

[image: image12.png]I oo o | i
o 1= ot [e o o e oo _l_l_l_lW _l_l_l_lf
== e i e

_l_l_l_l_l T U TSN T TR
IRl o s oo it o e e | _l_l_l_l_l
_l_l_l_l SRS S
0= SIS Inl= 1 1
Wﬁ“ﬁ“ Jriminmls LIS
ot o | It e o =
SEIRIEIE] SEIEEIE] SIEVEIEE)
T SIS SIS
o o o[o i et S e
Jot ot e et oo e o i e[| N
(SXEIET ISR

SLILTLT] CILTLTCY GTiT
SYSIEIENE] SISIEVEIET Qi EIETE)
SXEIEIEIE] SISIEIEIET IRl
[SICTEN T TSN
SXEICY EIETEY

[image: image13.png]o Bl o e o [
o 1= ot [e o o e oo _l_l_l_lW
== e i e

_l_l_l_l_l TR
IRl o s oo it o e e |
_l_l_l IR ==

T S _h_h_h

Jot ot o et o oo | Jo s N |

Jot ot | et o | o i e |
(SXEIET ISR

I

13
=
hrtim i w1 s 1 o
SYSIEIENE] SISIEIEIET G EIET
SXEIETENE] SISIEIEIET G EIET

TN
_l_l_l_lf

TR
_l_l_l_l_l

BT 2
SN

In the first picture hovering the cursor over a tile with ‘2’ yields 6 candidates for a bomb. On the second picture moving the cursor to another ‘2’ tile gives 8 candidates, of which 6 are the same as in the first case.

More trash spotted! If those 6 candidates already contain 2 bombs (as the first ‘2’ tile suggested) then those 2 candidates, which the second ‘2’ tile added to the highlight are safe to open. They can’t contain any bombs, because if they had any, the second ‘2’ tile would be a ‘3’ or a ‘4’ tile (in the last case, you would be happy to mark them both as bombs, but is case of ‘3’ that would mean one of the two tiles is a bomb and more information would be needed for smart guesses).

5. Avoid quick decisions

Any experienced Minesweeper player eventually reaches a point where all thinking goes automatically. However, with number of dimensions increased this will often lead to wrong decisions. Here is an example. I moved the cursor over a tile with ‘1’ as saw the following highlight pattern:

[image: image14.png]I oo o | i
s = ot e | e oo o e oo _l_l_l_l _l_l_l_l_l
[|t o e e [
i s N ™ _H_H 1 1
oo | It | o = |
SEIRIEIE] SISEEIE] SIEVEEE
T SIS SIS
o1 1 ETSIETEE 2 1 TSN BV TE
SRS SESEER SR _l_l_l_l_l
i in i m i e e [S
=l SEWEIE] Inl= 1 1
“ﬁ“ﬁ“ Jriminmls LIS
oo | I | o = |
SEIRIEIE] SIEIETEIET SIEVEIETE)
T SIS SIS

Ieulo o fl [o oo i e e e L
Jot ot o et oo e o i e |- e]
(SXEIET ISR

hrtim i o m s
EVSIEIEE SISIEER
SXEIEIEE SRR

=
SIS
SIS

Itmin
D=

ST
Imis

Then I moved the cursor upwards and got the following highlight:

[image: image15.png]I o o o | =
WW_I_I_I Jotioo e oo i [e [t _l_l_l_l_l
[|t o i e e [=
T SEWEIE] Inl= 1 1

i [+ e _l_l_ln - =
SYIRIEE]
ol _l_l o= I |

oy o _l_l_l AR
Il oo o o i B L L
i m I lo it o e [o i o e e _l_l_l_l_l
ERIEIEE SIS S
=l SEWEIE] Inl= 1 1
o o [[[[=
WWWWW ot o | It | o =
TEIRIEIE] SEIEEIE] SIEVEIEE
T SIS SIS
Ieulo o fl o o oo i e e e L
Jot ot | et oo ek o i e | e e
(SXEIET ISR
SLILTLTL] CILTLTCY G TiT
SNEIEIENE] SISIEVEIET ISRl
SNEIEIEIE] SISIEIEIET IRl
[SIETEN ST TSN
SXEICY EIETEY

I may quickly decide that if there is a long line of ‘1’ tiles, there must be a bomb somewhere in the center of that line, for example at the tile showed in the second picture.

This guess turns out to be wrong when we open the tiles further using methods 1 - 4. The nearly completed field looks like this:

[image: image16.png]J127 1]
I_I_EI—I_
22]
|EMEX P2l Y
|ENPY Y N EFYFY
{EYEY EYE A FYFEY
l_l_ l_l_l_l_l_l_l_l_ l_

Eo)
—I —I=|=|—|

z
{ESMNEVPYPY SEVFY l_l_

JEYEYEYEYEY

==
=

Em=

Our first guess turns out to be completely wrong. Moreover, the bomb is even not in the 2D table where we thought it would be. We opted for that table only because our cursor was currently there, but the neighbors in other layers just went unnoticed. It is a usual mistake in this game to pay attention to the neighbors only in the current 2D table and to ignore neighbors in other layers, time periods, or even planes or universes.

Finally, the level is finished with the following positions of the bombs:

[image: image17.png]

With the described algorithms you will be able to beat easy levels with any number of dimensions. Also, using them consistently will allow you to win the normal level of difficulty. However, hard difficulty level may require more advanced tricks. Feel free to experiment and you will be surprised how much you can find.

If you have any comments, suggestions or ideas that you would like to share with me or get implemented in this game, send an e-mail to iseeall@narod.ru

